Levels recommended: 5-7
Before we state the theorem, we need some definitions.

Suppose we have n variables x4, x5, X3, ..., X,. Then s is defined as the sum of all products of k
different variables. For example, s3 = x1X3X3 + X1X2X4 + =+ Xp_2Xp_1Xp.

These are called elementary symmetric polynomials. Note that s, is exactly the coefficient of x"k

in the polynomial (x + x1)(x + x3) (x + x3) ... (x + x,,). So if x4, x5, X3, ..., X, Were the actual roots, we
would have the known result that the s’s are the coefficients up to possibly a change in the sign. We
will use this resultin the application after the proof.

A symmetric polynomial is a function of more than one variables such that the function is obtained
by only adding and multiplying the variables, and it has the property that if you inputthem in a
different order you get the same function.

Forexample, f(x,y,z) = x%2yz + xy?z + xyz? is a symmetric polynomial. This is because it is sums of
products of x,yand zand f(x,y,z) = f(x,z,y) = f(y,x,2) = f(y,z,x) = f(z,x,y) = f(z,y,x).
However, something like x? + y? — z?2 is not symmetric as if you swap y and z you do not have the
same function.

Note that our example x2yz + xy?z + xyz? = s,s3. This is a special case of the theorem.

Theorem (the fundamental theorem of symmetric polynomials: All symmetric polynomials can be
written as sums of products of elementary symmetric polynomials.

Proof:

Lemma: Suppose we have finite ordered lists of non-negative integers. Define an ordering on these
lists where we say one list is greater than another if its first element is greater. If the first element is the
same, say one list is greater if its second element is greater, and so on. Then the lemma claims that if |
start with such a list, there is no infinitely decreasing chain of such lists.

Proof of lemma: Lets go by induction. We know for sure that for lists of 1 number this is true. For any
number | start with | clearly cannot make an infinitely decreasing chain of non-negative integers
starting from that number. Now suppose itis true for k numbers. Then for a (k+1)-list, what happens is
that | must decrease the first number after finitely many steps, because if | try to decrease the list,
then by the induction hypothesis, after finitely many steps | will not be able to decrease the elements
from positions 2 to k+1 anymore. At that point | will have to decrease the first element. But then this is
a finite thing that happens finitely many times. So done.

Now let’s prove the main theorem.

Lets take each term in a symmetric polynomial like folx;i2 xff” and define the multidegree of that

term as the list (dy,d>, ..., dy), where some terms may be 0. Sort the terms from largest to smallest
multidegree where the ordering of the multidegree is as in the statement of the lemma.

Note that the list of the multidegree of the term with largest multidegree will be in decreasing order.
This is because if it was not, we could sort it into decreasing order and by symmetry of the polynomial
that term must be one of the terms, and by how the ordering works it would have a larger multidegree
so any unsorted list could not be the largest multidegree.



Note that the term with the largest multidegree in the product of symmetric polynomials is the
product of the terms with the largest multidegree in the symmetric polynomials we are multiplying.
This is because by how the ordering on the multidegree works, and the fact multiplying by any term
just adds constants to the multidegree, multiplying by any term will not affect the ordering. If we letY
be the multidegree of the product of the terms in the polynomials we are multiplying that have largest
multidegree, then all other terms in the polynomials will have lower multidegree so their product will
have lower multidegree thanY — never higher—so Y is the largest.
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terms we are multiplying will be (d,,, d,,, ..., dy,), (dp—1 — dp, dppeq — dppy oo, dpeq — dpp, 0), ..,

Now consider sg"s ~%2 Then the highest multidegree term in each of the

(d, —ds,d, — d3,0,...,0),(d; — d,, 0, ...,0), so the term with highest multidegree in the product will
have multidegree (d4,d>, ..., dy).

Therefore let P(xq, X5, ..., X,) be a symmetric polynomial whose term with largest multidegree is
Cxxd . xdn . Then P(xy, Xy, ..., X)) — Csfnsinytmngdn—amda | odamdsgdida
polynomial whose largest multidegree is at most (d4, d,, ..., d,). Butitis actually not that as by

construction the terms with that multidegree cancelled. So the largest multidegree is something

is a symmetric

lower. Lets call this new polynomial Q (x4, x5, ..., X,,) and do the same procedure. But each time we do

this, the largest multidegree decreases, so after finitely many steps it will be down to 0 by the lemma.
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So eventually we will have P(xq, Xy, ..., X,) — Cs,(f"sn_1 Spt5 .S, S

(More sums and products of symmetric polynomials) = Constant. So move everything but P to 1
side then we are done.

Example:
Suppose that the following is true:
x+y+z=1
x2+y?+2z2=2
x3+y3+2z3=3
And we want x* + y* + z*.

Then lets write x? + y2 + z2 in terms of the s’s. Write it as x2y°z% + x°y?2z°% + x%y°z2. The largest
multidegree is (2,0,0) so by the proof we want to try subtracting s2.

x% +y?+ 2% —s? = —2xy — 2yz — 2xz

Now we have reduced the largest multidegree to (1,1,0). In this case we want to add 2s, to both sides,
then we will get x? + y? + z2 — s? + 2s, = 0 so

x2+y2+2z2=s,—2s,
But s; = 1 from the first equation and s; — 2s, = 2 from the second one. Therefore s, = — %
We can do the same procedure and it turns out that
x3+y3+ 23 —s} =—-3x%y —3x%z — 3y%x — 3y?z — 3z%x — 3z%y — 6xyz

x3 4+ 93+ 23 —s3 +3s;5, = 3xyz



x3 4+ 93+ 23 =53 — 35,5, + 353
So S3 = %

We could try to express x* + y* + z* in terms of elementary symmetric polynomials the same way

and then solve for this. If we do this we get %5.

Application (In mathematics, not the real world, don’t worry):
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Suppose we want to find a polynomial with integer coefficients such that 2z 4+ 33 is a root, or more

generally the sum of the roots of any two other polynomials is a root. The above are roots of x?> — 2 and
x3 — 3 respectively. Let the roots of x? — 2 be x4, x, and the roots of x> — 3 be y;,V,, ¥3, then there is a
polynomial whose roots are all the possible sums of roots of the two polynomials, ie a polynomial
whose roots are x; + y1, X, + V5, %1 + Y2, X5 + y1,X1 + V3, X2 + y3. Lets call these z4, z,, ..., Zg. Then
notice that (x — z;)(x — z3) ... (x — z¢)’s coefficients are exactly the symmetric polynomials in the z
variables. But then we can substitute back in x and y. The coefficients will then be symmetric
polynomials in the x and y variables. These can be expressed in terms of the elementary ones, which
are integers, because they are (possibly with a sign change) the coefficients of the starting
polynomials, ie x? — 2 and x3 — 3. So (x — z;) (x — z) ... (x — z¢) has integer coefficients and has

23 + 33 as a root. x° — 6x* — 6x°3 + 12x? — 36x + 1is the expanded polynomial, by the way, which
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indeed has 22 4+ 33 as one of its roots. We could find this but it would take a lot of annoying work. The

same applies to products of two roots.

So, if you know what a ring is, now you know that algebraic numbers are closed under addition and (by
a similar argument) multiplication and thus they are a ring.



