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Before we state the theorem, we need some definitions. 

Suppose we have n variables 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛. Then 𝑠𝑘 is defined as the sum of all products of k 
different variables. For example, 𝑠3 = 𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + ⋯ + 𝑥𝑛−2𝑥𝑛−1𝑥𝑛. 

These are called elementary symmetric polynomials. Note that 𝑠𝑘 is exactly the coefficient of 𝑥𝑛−𝑘 
in the polynomial (𝑥 + 𝑥1)(𝑥 + 𝑥2)(𝑥 + 𝑥3) … (𝑥 + 𝑥𝑛). So if 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 were the actual roots, we 
would have the known result that the s’s are the coefficients up to possibly a change in the sign. We 
will use this result in the application after the proof. 

A symmetric polynomial is a function of more than one variables such that the function is obtained 
by only adding and multiplying the variables, and it has the property that if you input them in a 
different order you get the same function. 

For example, 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2𝑦𝑧 + 𝑥𝑦2𝑧 + 𝑥𝑦𝑧2 is a symmetric polynomial. This is because it is sums of 
products of x, y and z and 𝑓(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑧, 𝑦) = 𝑓(𝑦, 𝑥, 𝑧) =  𝑓(𝑦, 𝑧, 𝑥) = 𝑓(𝑧, 𝑥, 𝑦) = 𝑓(𝑧, 𝑦, 𝑥). 
However, something like 𝑥2 + 𝑦2 − 𝑧2 is not symmetric as if you swap y and z you do not have the 
same function. 

Note that our example 𝑥2𝑦𝑧 + 𝑥𝑦2𝑧 + 𝑥𝑦𝑧2 = 𝑠1𝑠3. This is a special case of the theorem. 

Theorem (the fundamental theorem of symmetric polynomials: All symmetric polynomials can be 
written as sums of products of elementary symmetric polynomials. 

Proof: 

Lemma: Suppose we have finite ordered lists of non-negative integers. Define an ordering on these 
lists where we say one list is greater than another if its first element is greater. If the first element is the 
same, say one list is greater if its second element is greater, and so on. Then the lemma claims that if I 
start with such a list, there is no infinitely decreasing chain of such lists. 

Proof of lemma: Lets go by induction. We know for sure that for lists of 1 number this is true. For any 
number I start with I clearly cannot make an infinitely decreasing chain of non-negative integers 
starting from that number. Now suppose it is true for k numbers. Then for a (k+1)-list, what happens is 
that I must decrease the first number after finitely many steps, because if I try to decrease the list, 
then by the induction hypothesis, after finitely many steps I will not be able to decrease the elements 
from positions 2 to k+1 anymore. At that point I will have to decrease the first element. But then this is 
a finite thing that happens finitely many times. So done. 

Now let’s prove the main theorem. 

Lets take each term in a symmetric polynomial like 𝐶𝑥1
𝑑1𝑥2

𝑑2 … 𝑥𝑛
𝑑𝑛  and define the multidegree of that 

term as the list (𝑑1, 𝑑2, … , 𝑑𝑛), where some terms may be 0. Sort the terms from largest to smallest 
multidegree where the ordering of the multidegree is as in the statement of the lemma. 

Note that the list of the multidegree of the term with largest multidegree will be in decreasing order. 
This is because if it was not, we could sort it into decreasing order and by symmetry of the polynomial 
that term must be one of the terms, and by how the ordering works it would have a larger multidegree 
so any unsorted list could not be the largest multidegree. 



Note that the term with the largest multidegree in the product of symmetric polynomials is the 
product of the terms with the largest multidegree in the symmetric polynomials we are multiplying. 
This is because by how the ordering on the multidegree works, and the fact multiplying by any term 
just adds constants to the multidegree, multiplying by any term will not affect the ordering. If we let Y 
be the multidegree of the product of the terms in the polynomials we are multiplying that have largest 
multidegree, then all other terms in the polynomials will have lower multidegree so their product will 
have lower multidegree than Y – never higher – so Y is the largest. 

Now consider 𝑠𝑛
𝑑𝑛𝑠𝑛−1

𝑑𝑛−1−𝑑𝑛𝑠𝑛−2
𝑑𝑛−2−𝑑2 … 𝑠2

𝑑2−𝑑3𝑠1
𝑑3−𝑑2. Then the highest multidegree term in each of the 

terms we are multiplying will be (𝑑𝑛, 𝑑𝑛, … , 𝑑𝑛), (𝑑𝑛−1 − 𝑑𝑛, 𝑑𝑛−1 − 𝑑𝑛, … , 𝑑𝑛−1 − 𝑑𝑛, 0), …, 

(𝑑2 − 𝑑3, 𝑑2 − 𝑑3, 0, … ,0), (𝑑1 − 𝑑2, 0, … ,0), so the term with highest multidegree in the product will 
have multidegree (𝑑1, 𝑑2, … , 𝑑𝑛). 

Therefore let 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) be a symmetric polynomial whose term with largest multidegree is 

𝐶𝑥1
𝑑1𝑥2

𝑑2 … 𝑥𝑛
𝑑𝑛. Then 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) − 𝐶𝑠𝑛

𝑑𝑛𝑠𝑛−1
𝑑𝑛−1−𝑑𝑛𝑠𝑛−2

𝑑𝑛−2−𝑑2 … 𝑠2
𝑑2−𝑑3𝑠1

𝑑1−𝑑2  is a symmetric 
polynomial whose largest multidegree is at most (𝑑1, 𝑑2, … , 𝑑𝑛). But it is actually not that as by 
construction the terms with that multidegree cancelled. So the largest multidegree is something 
lower. Lets call this new polynomial 𝑄(𝑥1, 𝑥2, … , 𝑥𝑛) and do the same procedure. But each time we do 
this, the largest multidegree decreases, so after finitely many steps it will be down to 0 by the lemma. 

So eventually we will have 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) − 𝐶𝑠𝑛
𝑑𝑛𝑠𝑛−1

𝑑𝑛−1−𝑑𝑛𝑠𝑛−2
𝑑𝑛−2−𝑑2 … 𝑠2

𝑑2−𝑑3𝑠1
𝑑1−𝑑2 −

(𝑀𝑜𝑟𝑒 𝑠𝑢𝑚𝑠 𝑎𝑛𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑜𝑓 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. So move everything but P to 1 
side then we are done. 

Example: 

Suppose that the following is true: 

𝑥 + 𝑦 + 𝑧 = 1 

𝑥2 + 𝑦2 + 𝑧2 = 2 

𝑥3 + 𝑦3 + 𝑧3 = 3 

And we want 𝑥4 + 𝑦4 + 𝑧4. 

Then lets write 𝑥2 + 𝑦2 + 𝑧2 in terms of the s’s. Write it as 𝑥2𝑦0𝑧0 + 𝑥0𝑦2𝑧0 + 𝑥0𝑦0𝑧2. The largest 
multidegree is (2,0,0) so by the proof we want to try subtracting 𝑠1

2. 

𝑥2 + 𝑦2 + 𝑧2 − 𝑠1
2 = −2𝑥𝑦 − 2𝑦𝑧 − 2𝑥𝑧 

Now we have reduced the largest multidegree to (1,1,0). In this case we want to add 2𝑠2 to both sides, 
then we will get 𝑥2 + 𝑦2 + 𝑧2 − 𝑠1

2 + 2𝑠2 = 0 so 

𝑥2 + 𝑦2 + 𝑧2 = 𝑠1 − 2𝑠2 

But 𝑠1 = 1 from the first equation and 𝑠1 − 2𝑠2 = 2 from the second one. Therefore 𝑠2 = −
1

2
. 

We can do the same procedure and it turns out that 

𝑥3 + 𝑦3 + 𝑧3 − 𝑠1
3 = −3𝑥2𝑦 − 3𝑥2𝑧 − 3𝑦2𝑥 − 3𝑦2𝑧 − 3𝑧2𝑥 − 3𝑧2𝑦 − 6𝑥𝑦𝑧 

𝑥3 + 𝑦3 + 𝑧3 − 𝑠1
3 + 3𝑠1𝑠2 = 3𝑥𝑦𝑧 



𝑥3 + 𝑦3 + 𝑧3 = 𝑠1
3 − 3𝑠1𝑠2 + 3𝑠3 

So 𝑠3 =
1

6
. 

We could try to express 𝑥4 + 𝑦4 + 𝑧4 in terms of elementary symmetric polynomials the same way 

and then solve for this. If we do this we get 25

6
. 

Application (In mathematics, not the real world, don’t worry): 

Suppose we want to find a polynomial with integer coefficients such that 2
1

2 + 3
1

3 is a root, or more 
generally the sum of the roots of any two other polynomials is a root. The above are roots of 𝑥2 − 2 and 
𝑥3 − 3 respectively. Let the roots of 𝑥2 − 2 be 𝑥1, 𝑥2 and the roots of 𝑥3 − 3 be 𝑦1, 𝑦2, 𝑦3, then there is a 
polynomial whose roots are all the possible sums of roots of the two polynomials, ie a polynomial 
whose roots are 𝑥1 + 𝑦1, 𝑥2 + 𝑦2, 𝑥1 + 𝑦2, 𝑥2 + 𝑦1, 𝑥1 + 𝑦3, 𝑥2 + 𝑦3. Lets call these 𝑧1, 𝑧2, … , 𝑧6. Then 
notice that (𝑥 − 𝑧1)(𝑥 − 𝑧2) … (𝑥 − 𝑧6)’s coefficients are exactly the symmetric polynomials in the z 
variables. But then we can substitute back in x and y. The coefficients will then be symmetric 
polynomials in the x and y variables. These can be expressed in terms of the elementary ones, which 
are integers, because they are (possibly with a sign change) the coefficients of the starting 
polynomials, ie 𝑥2 − 2 and 𝑥3 − 3. So (𝑥 − 𝑧1)(𝑥 − 𝑧2) … (𝑥 − 𝑧6) has integer coefficients and has 

2
1

2 + 3
1

3 as a root. 𝑥6 − 6𝑥4 − 6𝑥3 + 12𝑥2 − 36𝑥 + 1 is the expanded polynomial, by the way, which 

indeed has 2
1

2 + 3
1

3 as one of its roots. We could find this but it would take a lot of annoying work. The 
same applies to products of two roots. 

So, if you know what a ring is, now you know that algebraic numbers are closed under addition and (by 
a similar argument) multiplication and thus they are a ring. 


